
In “Shut Up and Dance,” a poignant episode
of the TV show Black Mirror, hackers infect a

young teenager’s computer with malware, spy
on him through his webcam, then blackmail him

into performing criminal acts. Coincidentally, shortly
before the episode aired, I found myself reverse engi-
neering an intriguing piece of Mac malware known as
FruitFly that did something very similar.1

This persistent backdoor had many capabilities, including the ability to
spy on its victims’ webcams by leveraging archaic QuickTime APIs. Although
these APIs activated a camera’s LED indicator light, the malware had a rather
insidious trick up its sleeve to attempt to remain undetected; it waited until
the victim was inactive before triggering the spying logic. As a result, the vic-
tim likely didn’t notice that their webcam had been surreptitiously activated.

My investigation of the malware intersected with an FBI operation that
led to the arrest of the alleged creator and revealed FruitFly’s insidious reach.

12
M I C A N D W E B C A M M O N I T O R

280!!!Chapter 12

According to a Justice Department press release and indictment, the creator
had installed FruitFly on thousands of computers over the course of 13!years.2

Apple eventually took steps to mitigate this threat, such as creating
XProtect detection signatures. Even so, FruitFly remains a stark reminder
of the very real dangers Mac users can face, despite Apple’s best efforts.
FruitFly isn’t even the only Mac malware that spies on its victims through
the webcam. Others include Mokes, Eleanor, and Crisis.

To address these threats, I released OverSight, a utility that monitors a
Mac’s built-in mic and webcam, as well as any external connected audio and
video devices, and alerts the user about any unauthorized access. In this
chapter, I’ll explain how OverSight monitors these devices. I’ll also demon-
strate how this tool ingests system log messages "ltered via custom predi-
cates to identify the process responsible for the device access.

You can "nd OverSight’s full source code in the Objective-See GitHub
repository at https://github.com/objective-see/OverSight.

Tool Design
In a nutshell, OverSight alerts the user whenever their Mac’s mic or webcam
activates and, most importantly, identi"es the responsible process. Thus,
whenever malware such as FruitFly attempts to access the camera or mic,
this action will trigger an OverSight alert. While OverSight doesn’t attempt
to classify the process as benign or malicious by design, it provides options
for users to either allow or block the process or to exempt trusted processes
(Figure 12-1).

Figure 12-1: OverSight provides the option to always allow
a certain tool to access the mic and webcam.

The Allow (Once) option essentially takes no action, as OverSight
receives noti"cations once the device activation has already occurred.
However, the Allow (Always) option provides a simple way for users to create
rules that keep trusted processes, such as FaceTime or Zoom, from gener-
ating alerts in the future. Finally, the Block option will terminate the process
by sending it a kill signal (SIGKILL).

Compared to tools such as BlockBlock, which contains various com-
ponents and XPC communications, OverSight is relatively simple. It’s a

https://github.com/objective-see/OverSight

Mic and Webcam Monitor!!!281

self-contained, stand-alone app able to perform its mic and webcam
monitoring duties with standard user privileges. Let’s explore exactly how
OverSight achieves this monitoring and, more importantly, identi"es the
responsible process. We’ll see that the former is easy thanks to various
CoreAudio and CoreMediaIO APIs, while the latter is a more challenging task.

Mic and Camera Enumeration
To receive a noti"cation that a process has activated or deactivated each
connected mic or webcam, OverSight adds to each device what is known as
a property listener for the “is running somewhere” property, kAudioDevice
PropertyDeviceIsRunningSomewhere. Because the APIs to add such a listener
require a device ID, let’s "rst look at how we can enumerate mic and cam-
era devices and then extract each device’s ID.

The AVFoundation3 class AVCaptureDevice4 exposes the class method devices
WithMediaType:, which takes a media type as an argument (Listing 12-1). To
enumerate audio devices such as mics, we use the constant AVMediaTypeAudio.
To enumerate video devices, we use AVMediaTypeVideo. The method returns
an array of AVCaptureDevice objects that match the speci"ed media type.

#import <AVFoundation/AVCaptureDevice.h>

for(AVCaptureDevice* audioDevice in [AVCaptureDevice devicesWithMediaType:AVMediaTypeAudio]) {
 printf("audio device: %s\n", audioDevice.description.UTF8String);

 // Add code here to add a property listener for each audio device.
}
for(AVCaptureDevice* videoDevice in [AVCaptureDevice devicesWithMediaType:AVMediaTypeVideo]) {
 printf("video device: %s\n", videoDevice.description.UTF8String);

 // Add code here to add a property listener for each video device.
}

Listing 12-1: Enumerating all audio and video devices

Compiling and running the code in Listing 12-1 outputs the following
on my system, which shows my Mac’s built-in microphone and webcam and
also a pair of connected headphones:

Audio device: <AVCaptureHALDevice: 0x11b36a480 [MacBook Pro
Microphone][BuiltInMicrophoneDevice]>

Audio device: <AVCaptureHALDevice: 0x11a7e0440 [Bose QuietComfort 35]
[04-52-C7-77-0D-4E:input]>

Video device: <AVCaptureDALDevice: 0x10dbb2c00 [FaceTime HD Camera]
[3F45E80A-0176-46F7-B185-BB9E2C0E82E3]>

You can access the device’s name, such as FaceTime HD Camera, in the
localizedName property of each AVCaptureDevice object. You may also want
to make use of other object properties such as modelID, manufacturer, and

282!!!Chapter 12

deviceType to monitor only a subset of devices. For example, you might
choose to monitor only devices built into your Mac.

Audio Monitoring
To set a property listener on each audio device so you can receive activa-
tion and deactivation noti"cations, OverSight implements a helper method
named watchAudioDevice: that takes a pointer to an AVCaptureDevice object.
For each device of type AVMediaTypeAudio, OverSight invokes this helper.

At the core of this method is a call to the AVFoundation AudioObjectAdd
Property ListenerBlock function, de"ned in the AVFoundation AudioHardware.h
header "le as follows:

extern OSStatus AudioObjectAddPropertyListenerBlock(AudioObjectID inObjectID,
const AudioObjectPropertyAddress* inAddress, dispatch_queue_t __nullable inDispatchQueue,
AudioObjectPropertyListenerBlock inListener);

The "rst parameter is an ID for the audio object, for which we can
register a property listener. Each AVCaptureDevice object has an object prop-
erty named connectionID containing this required ID, but it isn’t publicly
exposed. This means we can’t access it directly by writing code such as
audioDevice .connectionID. However, as noted elsewhere in this book, you can
access private properties either by extending the object’s de"nition or by
using the performSelector:withObject: method.

OverSight uses the latter approach. You’ll "nd the logic to obtain the
private device ID from an AVCaptureDevice object in a helper method named
getAVObjectID: (Listing 12-2).

-(UInt32)getAVObjectID:(AVCaptureDevice*)device {
 UInt32 objectID = 0;

 1 SEL methodSelector = NSSelectorFromString(@"connectionID");
 if(YES != [device respondsToSelector:methodSelector]) {
 goto bail;
 }

 2 #pragma clang diagnostic push
 #pragma clang diagnostic ignored "-Wpointer-to-int-cast"
 #pragma clang diagnostic ignored "-Warc-performSelector-leaks"
 3 objectID = (UInt32)[device performSelector:methodSelector withObject:nil];
 4 #pragma clang diagnostic pop

bail:
 return objectID;
}

Listing 12-2: Obtaining a device’s private ID

In Objective-C, you can access object properties, including private ones,
by invoking a method on the object that matches the property’s name. You
can refer to these methods, or indeed any methods, by their names using

Mic and Webcam Monitor!!!283

selectors. Represented by the SEL type, Objective-C selectors are really just
pointers to strings that represent the name of the method. In Listing 12-2,
you can see that the code "rst creates a selector for the connectionID prop-
erty using the NSSelectorFromString API 1.

Because connectionID is a private property, nothing is stopping Apple from
renaming it or removing it altogether. For that reason, the code invokes the
respondsToSelector: method to make sure it’s still found on the AVCaptureDevice
object; if not, it bails. You should always make use of the respondsToSelector:
method before attempting to access private properties or invoking private
methods; otherwise, your program risks crashing with a doesNotRecognize
Selector exception.5

Next, the code makes use of various #pragma directives to save the
diagnostic state and tell the compiler to ignore warnings that would oth-
erwise be shown 2. These warnings get raised when we invoke the perform
Selector: withObject: method 3, as the compiler has no way of knowing what
object it returns and thus can’t know how to manage its memory.6 Because
the connectionID is just an unsigned 32-bit integer, it doesn’t need memory
management.

Finally, the code accesses the connectionID property via the selector cre-
ated earlier. It accomplishes this in the aforementioned perform Selector:
withObject: method, which allows you to invoke an arbitrary selector on
an arbitrary object. With the device’s identi"er in hand, the helper func-
tion restores the previous diagnostic state 4 and returns the device’s ID
to!the!caller.

The second argument to the AudioObjectAddPropertyListenerBlock func-
tion is a pointer to an AudioObjectPropertyAddress structure, which identi"es
the property we’re interested in receiving a noti"cation about. OverSight
initializes the structure, as shown in Listing 12-3.

AudioObjectPropertyAddress propertyStruct = {0};
propertyStruct.mSelector = kAudioDevicePropertyDeviceIsRunningSomewhere;
propertyStruct.mScope = kAudioObjectPropertyScopeGlobal;
propertyStruct.mElement = kAudioObjectPropertyElementMain;

Listing 12-3: Initializing an AudioObjectPropertyAddress structure

We specify that we’re interested in the kAudioDevicePropertyDeviceIs
RunningSomewhere property, which relates to device activation and deactivation
by any process on the system. The other elements of the structure indicate
that the property we speci"ed applies globally to the entire device, not just
to a particular input or output. As a result, once we’ve added the property
listener block, OverSight will receive noti"cations when the speci"ed audio
device’s run state changes.

The function’s third argument is a standard dispatch queue on which
to execute the listener block (described next). We can either create a dedi-
cated queue via the dispatch_queue_create API or use dispatch_get_global
_queue, for example, with the DISPATCH_QUEUE_PRIORITY_DEFAULT constant,
to make use of an existing global queue. The "nal argument to the func-
tion is a block of type AudioObjectPropertyListenerBlock that the Core Audio

284!!!Chapter 12

framework will automatically invoke whenever the speci"ed property changes
on the speci"ed device. Here is the listener block’s type de"nition, also
found in AudioHardware.h:

typedef void (^AudioObjectPropertyListenerBlock)(UInt32 inNumberAddresses,
const AudioObjectPropertyAddress* inAddresses);

As multiple properties could change all at once if speci"ed to receive
noti"cations, the listener block gets invoked with an array of AudioObject
Property Address objects and the number of elements in this array. OverSight
is only interested in a single property, so it ignores these parameters. For
completeness, Listing 12-4 shows OverSight’s watchAudioDevice: method, which
contains the core logic for specifying the property of interest, de"ning a lis-
tener block for noti"cations, and then adding it to the speci"ed audio device.

-(BOOL)watchAudioDevice:(AVCaptureDevice*)device {
 AudioObjectPropertyAddress propertyStruct = {0};

 propertyStruct.mSelector = kAudioDevicePropertyDeviceIsRunningSomewhere;
 propertyStruct.mScope = kAudioObjectPropertyScopeGlobal;
 propertyStruct.mElement = kAudioObjectPropertyElementMain;

 AudioObjectID deviceID = [self getAVObjectID:device];

 AudioObjectPropertyListenerBlock listenerBlock =
 ^(UInt32 inNumberAddresses, const AudioObjectPropertyAddress* inAddresses) {
 // Code to handle device's run state changes removed for brevity
 };

 AudioObjectAddPropertyListenerBlock(deviceID, &propertyStruct, self.eventQueue,
 listenerBlock);
 ...
}

Listing 12-4: Setting up a listener block for an audio device’s run state changes

The OverSight code in the listener block queries the device to determine
its current state, as the noti"cation tells us that the run state changed, but
not to what state. If it "nds the audio device turned on, OverSight consults its
log monitor to determine the identity of the process responsible for accessing
and activating the device. This step, discussed in more detail in “Responsible
Process Identi"cation” on page 288, is unfortunately necessary, because
although Apple provides APIs to receive noti"cations about the state changes
of an audio device, they provide no information about the responsible pro-
cess. Lastly, the listener block alerts the user, providing information about
the audio device, its state, and, in activation cases, the responsible process.

To determine whether the device was activated or deactivated, OverSight
invokes the AudioDeviceGetProperty API within a helper method it names getMic
State: (Listing 12-5).

Mic and Webcam Monitor!!!285

-(UInt32)getMicState:(AVCaptureDevice*)device {
 UInt32 isRunning = 0;
 UInt32 propertySize = sizeof(isRunning);

 AudioObjectID deviceID = [self getAVObjectID:device]; 1
 AudioDeviceGetProperty(deviceID, 0, false, kAudioDevicePropertyDeviceIsRunningSomewhere,
 &propertySize, &isRunning); 2

 return isRunning;
}

Listing 12-5: Determining the current state of an audio device

After declaring a few necessary variables, this method invokes the getAV
ObjectID: helper method discussed earlier to extract the private device ID
from the AVCaptureDevice object that triggered the noti"cation!1. It then
passes this value, along with the kAudioDevicePropertyDeviceIsRunningSomewhere
constant, a size, and an out pointer for the result, to the AudioDeviceGetProperty
function 2. As a result of this call, we’ll know whether the noti"cation we
received in the callback block occurred due to a device activation or a less
interesting deactivation.

Next, I’ll show you how to monitor video devices, such as the built-in
webcam.

Camera Monitoring
To detect the run-state changes of video devices, which are of type AVMedia
TypeVideo, we can follow an approach similar to the audio device monitoring
code. However, we’ll use APIs in the CoreMediaIO framework and register a
property listener with the CMIOObjectAddPropertyListenerBlock API.

OverSight monitors video devices for run-state changes in its watchVideo
Device: method (Listing 12-6).

-(BOOL)watchVideoDevice:(AVCaptureDevice*)device {
 1 CMIOObjectPropertyAddress propertyStruct = {0};
 propertyStruct.mScope = kAudioObjectPropertyScopeGlobal;
 propertyStruct.mElement = kAudioObjectPropertyElementMain;
 propertyStruct.mSelector = 2 kAudioDevicePropertyDeviceIsRunningSomewhere;

 3 CMIOObjectID deviceID = [self getAVObjectID:device];

 4 CMIOObjectPropertyListenerBlock listenerBlock = ^(UInt32
 inNumberAddresses, const CMIOObjectPropertyAddress addresses[]) {
 // Code to handle device's run-state changes removed for brevity
 };

 5 CMIOObjectAddPropertyListenerBlock(deviceID, &propertyStruct,
 self.eventQueue, listenerBlock);
 ...
}

Listing 12-6: Setting up a listener block for a video device’s run-state changes

286!!!Chapter 12

As when monitoring audio devices, the code initializes a property
structure to specify the property for which we’re interested in receiv-
ing noti"cations 1. Notice that we use the same constants as for audio
devices!2. Apple’s header "les don’t appear to de"ne a video device–
speci"c constant.

Next, we get the video device’s ID using OverSight’s getAVObjectID:
helper method 3. We also implement a listener block of type CMIOObject
Property Listener Block 4, then invoke the CMIOObjectAddProperty Listener Block
function 5. Once we’ve made this call, the CoreMediaIO framework will
automatically invoke the listener block whenever a monitored video device
activates or deactivates.

As with audio devices, we must manually query the device to learn
whether it was activated or deactivated. You can "nd this logic in OverSight’s
getCameraState: method, which uses CoreMediaIO APIs but is otherwise nearly
identical to the getMicState: method. As such, I won’t cover it here.

Device Connections and Disconnections
So far, we’ve enumerated the audio and video devices currently connected
to the system. For each device, we’ve added a property listener block that
will receive a noti"cation whenever the device activates or deactivates. This
is all well and good, but we also need to handle cases in which currently
monitored devices disconnect and reconnect, as well as situations in which
a user plugs in a new device during the monitoring. For example, imagine
that the user regularly connects or disconnects their laptop to an Apple
Cinema display. These displays have built-in webcams that OverSight should
monitor for unauthorized activations, so we must be able to handle devices
that come and go.

Luckily, this is relatively straightforward thanks to the macOS NS
Notification Center dispatch mechanism. Part of the Foundation framework, it
allows clients to register themselves as observers for events of interest, then
receive noti"cations whenever these events occur. To learn about audio or
video device connections and disconnections, we’ll subscribe to the events
AVCapture DeviceWasConnectedNotification and AVCapture Device Was Disconnected
Notification, which we can register with the code in Listing 12-7.

[NSNotificationCenter.defaultCenter addObserver:self
selector:@selector(handleConnectedDeviceNotification:)
name:AVCaptureDeviceWasConnectedNotification object:nil];

[NSNotificationCenter.defaultCenter addObserver:self
selector:@selector(handleDisconnectedDeviceNotification:)
name:AVCaptureDeviceWasDisconnectedNotification object:nil];

Listing 12-7: Registering for device connections and disconnections

OverSight makes two calls to the addObserver:selector:name:object:
method to register itself for the events of interest. Let’s take a closer look at
the arguments passed to this method. First is the object, or observer, used to
handle the noti"cation. OverSight speci"es self to indicate that the object

Mic and Webcam Monitor!!!287

registering for the noti"cations is the same as the object that will handle
them. As the second argument, OverSight uses the @selector keyword to
specify the name of the method to invoke on the observer object and handle
the noti"cation. For new device connections, we use an OverSight method
named handleConnectedDeviceNotification:, and for disconnections, we use
handleDisconnectedDeviceNotification:. We’ll look at these methods shortly.

Next, we specify the event of interest, such as device connection or
disconnection. The constants for these events can be found in Apple’s
AVCaptureDevice.h "le. The last argument allows you to specify an additional
object to deliver along with the noti"cation. OverSight doesn’t make use of
this and, as such, simply passes nil.

Once OverSight has invoked addObserver:selector:name:object: twice,
whenever a device connects or disconnects, the noti"cation center will
invoke our corresponding observer method. The single parameter it
passes to this method is a pointer to an NSNotification object. In the case of
device connection or disconnection, this object contains a pointer to the
AVCaptureDevice.

Both noti"cation observer methods "rst extract the device from the
noti"cation object and then determine its type (audio or video). Next, the
code invokes OverSight’s device type–speci"c methods to either start or
stop the monitoring, depending on whether the device was connected or
disconnected.

As an example, Listing 12-8 shows the implementation of the handle
ConnectedDeviceNotification: method.

-(void)handleConnectedDeviceNotification:(NSNotification *)notification {
 1 AVCaptureDevice* device = notification.object;

 2 if(YES == [device hasMediaType:AVMediaTypeAudio]) {
 [self watchAudioDevice:device];
 3 } else if(YES == [device hasMediaType:AVMediaTypeVideo]) {
 [self watchVideoDevice:device];
 }
}

Listing 12-8: When a new device connects, OverSight will begin monitoring it for
run-state changes.

The method extracts the device that triggered the noti"cation by access-
ing the object property of the NSNotification object passed into it 1. If this
just-connected device is an audio device, the code invokes OverSight’s watch
AudioDevice: method, discussed earlier, to register a property listener block
for state changes 2. For video devices, the code invokes the watchVideoDevice:
method 3. The method to handle device disconnections is identical, except
it invokes the relevant OverSight unwatch methods, discussed in “Stopping”
on page 293, which stop the monitoring of audio or video devices.

If we were solely interested in the fact that a video or audio device had
activated or deactivated, we’d be done. However, these events have limited

288!!!Chapter 12

utility for malware detection if they don’t include the process responsible
for triggering it. So, we have more work cut out for us.

Responsible Process Identification
Many legitimate activities could activate your mic or camera (for example,
hopping on a conference call). A security tool must be able to identify
the!process accessing a device so it can ignore the ones it trusts and gener-
ate alerts for any it doesn’t recognize.

In previous chapters, I mentioned that Endpoint Security APIs can
identify the process responsible for many events of interest. Unfortunately,
Endpoint Security doesn’t report on mic and camera access yet (although
I’ve begged Apple to add this feature many a time). While we’ve shown that
the CoreAudio and CoreMediaIO APIs can provide noti"cations about changes
to a device’s run state, they don’t contain information about the respon-
sible process.

Over the years, OverSight has taken various roundabout approaches
to accurately identify the responsible process. Initially, it took advantage
of the fact that frameworks within processes accessing the mic or webcam
would send various Mach messages to the core macOS camera and audio
assistant daemons. When it received a device run-state change noti"cation,
OverSight would enumerate any Mach message senders. It also supple-
mented this information by extracting responsible candidate processes
from the I/O registry.7 Unfortunately, even this combined approach often
yielded more than one candidate process. So, OverSight executed the
macOS sample utility, which provided stack traces of the candidate pro-
cesses. By examining these stack traces, it could identify whether a process
was actively interacting with an audio or video device.

This approach wasn’t the most ef"cient (and the sample utility is a touch
invasive, as it brie#y suspends the target process), but it could consistently
identify the responsible process. At the time, OverSight was the only tool on
the market able to provide this feature, making it a hit not only with users
but also with commercial entities, who reverse engineered the tool to steal
this capability for their own purposes—bugs and all! When I confronted
the companies with proof of this transgression, all eventually admitted
fault, apologized, and made amends.8

N O T E Interestingly, one of the developers who copied OverSight’s proprietary logic began
working for Apple shortly thereafter. Coincidentally or not, more recent versions of
macOS now alert you when a process initially attempts to access the mic or camera.
As they say, imitation is the sincerest form of !attery.

As macOS changed, OverSight’s initial method of identifying the
responsible process began to show its age. Luckily the introduction of the
universal log provides a more ef"cient solution. In Chapter!6, I showed how
to use the universal log’s private APIs and frameworks for ingesting stream-
ing log messages, among other tasks. OverSight uses these same APIs and
frameworks, coupled with custom "lter predicates, to identify the process
responsible for triggering any mic or camera state changes.

Mic and Webcam Monitor!!!289

N O T E Messages in the log can change at any time. In this section, I focus on the messages
present in macOS 14 and 15. While future versions of the operating system could
replace these messages, you should be able to identify the new ones and swap them in.

The universal log contains many messages continually streaming from
all corners of the system. To identify relevant messages (for example, those
pertaining to processes accessing the camera), let’s start a log stream, then
"re up an application such as FaceTime that makes use of the webcam:

% log stream
...
Default 0x0 367 0 com.apple.cmio.registerassistantservice:
[com.apple.cmio:] RegisterAssistantService.m:2343:-[RegisterAssistantServer
addRegisterExtensionConnection:]_block_invoke [{private}901][{private}0]
added <private> endpoint <private> camera <private>

Default 0x0 901 0 avconferenced: (CoreMediaIO) [com.apple.cmio:]
CMIOHardware.cpp:747:CMIODeviceStartStream backtrace 0 CoreMediaIO
0x000000019b4c4040 CMIODeviceStartStream + 228 [0x19b45a000 + 434240]

In the stream, you can see messages related to the camera access. These
contain references to a process with the PID of 901 or emanating from that
process. In this example, that PID maps to the process avconferenced, which
accesses the webcam on behalf of FaceTime. Let’s try another application
(say, Zoom) to see what shows up in the logs:

% log stream
...
Default 0x0 367 0 com.apple.cmio.registerassistantservice:
[com.apple.cmio:] RegisterAssistantService.m:2343:-[RegisterAssistantServer
addRegisterExtensionConnection:]_block_invoke [{private}17873][{private}0]
added <private> endpoint <private> camera <private>

Default 0x0 17873 0 zoom.us: (CoreMediaIO) [com.apple.cmio:]
CMIOHardware.cpp:747:CMIODeviceStartStream backtrace 0 CoreMediaIO
0x00007ff8248a6287 CMIODeviceStartStream
+ 205 [0x7ff824840000 + 418439]CMIOHardware.cpp:747:CMIODeviceStartStream
backtrace 0 CoreMediaIO 0x00007ff8248a6287 CMIODeviceStartStream +
205 [0x7ff824840000 + 418439]

We receive the exact same messages, except this time they contain a
process ID of 17873, which belongs to Zoom. You can perform a similar
experiment to identify log messages containing information about pro-
cesses accessing the mic.

To programmatically interact with the universal log, OverSight imple-
ments a custom class named LogMonitor. The code in this class interfaces with
APIs found within the private LoggingSupport framework. Since Chapter!6 cov-
ered this strategy, I won’t repeat the detail here. If you’re interested in the full
code, take a look at the LogMonitor.m "le in the OverSight project.

290!!!Chapter 12

OverSight’s LogMonitor class exposes a method with the de"nition shown
in Listing 12-9.

-(BOOL)start:(NSPredicate*)predicate level:(NSUInteger)level
callback:(void(^)(OSLogEvent*))callback;

Listing 12-9: LogMonitor’s method to start a log stream filtered by a specified level
and predicate

Given a predicate and a log level (such as default or debug), this
method activates a streaming log session. It will pass log messages of type
OSLogEvent that match the speci"ed predicate to the caller using the speci"ed
callback!block.

OverSight uses a predicate that matches all log messages from either
the core media I/O subsystem or the core media subsystem, because these
subsystems generate the speci"c log messages that contain the PID of the
responsible process (Listing 12-10).

if(@available(macOS 14.0, *)) {
 [self.logMonitor start:[NSPredicate predicateWithFormat:@"subsystem=='com.apple.cmio' OR
 subsystem= = 'com. apple. coremedia'"] level:Log_Level_Default callback:^(OSLogEvent*
 logEvent) {
 // Code that processes cmio and coremedia log messages removed for brevity
 }];
}

Listing 12-10: Filtering messages from the cmio and coremedia subsystems

We intentionally leave these predicates broad to ensure that macOS
performs the predicate matching within the system log daemon’s instance
of the logging framework, rather than in the instance of the same frame-
work loaded in OverSight. This avoids the signi"cant overhead of copying
and transmitting all system log messages between the two processes. The
only downside to using a broader predicate is that OverSight must then
"lter out irrelevant messages. As neither of the two speci"ed subsystems
generates a signi"cant number of log messages, however, this additional
processing doesn’t introduce much overhead.

For each message from the subsystems, OverSight checks whether it
contains the PID of the process that triggered the device’s run-state change.
Listing 12-11 shows the code to do this for camera events.

1 NSRegularExpression* cameraRegex = [NSRegularExpression
regularExpressionWithPattern:@"\\[\\{private\\}(\\d+)\\]"
options:0 error:nil];

2 if((YES == [logEvent.subsystem isEqual:@"com.apple.cmio"]) &&
 (YES == [logEvent.composedMessage hasSuffix:@"added <private>
 endpoint <private> camera <private>"])) {
 3 NSTextCheckingResult* match = [cameraRegex firstMatchInString:logEvent.
 composedMessage options:0 range:NSMakeRange(0, logEvent.composedMessage.
 length)];
 if((nil == match) || (NSNotFound == match.range.location)) {

Mic and Webcam Monitor!!!291

 return;
 }
 4 NSInteger pid = [[logEvent.composedMessage substringWithRange:
 [match rangeAtIndex:1]] integerValue];
 self.lastCameraClient = pid;
}

Listing 12-11: Parsing cmio messages to detect the responsible process

For camera events, we look for a message from the com.apple.cmio
 subsystem ending with added <private> endpoint <private> camera <private> 2.
To extract the PID for this process, OverSight uses a regular expression,
which it initializes prior to the message processing to avoid reinitializa-
tion!1, then applies it to the candidate messages 3. If the regular expres-
sion doesn’t match, the callback exits with a return statement. Otherwise, it
extracts the PID as an integer and saves it into an instance variable named
lastCamera Client 4. OverSight references this variable when it receives a
camera run-state change noti"cation and builds an alert to show the user
(Listing 12-12).

Client* client = nil;

if(0 != self.lastCameraClient) {
 client = [[Client alloc] init];
 client.pid = [NSNumber numberWithInteger:self.lastCameraClient];
 client.path = valueForStringItem(getProcessPath(client.pid.intValue));
 client.name = valueForStringItem(getProcessName(client.path));
}
Event* event = [[Event alloc] init:client device:device deviceType:
Device_Camera state:NSControlStateValueOn];

[self handleEvent:event];

Listing 12-12: Creating an object encapsulating the responsible process

For mic events, the approach is similar, except OverSight looks for mes-
sages from the com .apple .coremedia subsystem that start with -MXCoreSession -
-[MXCoreSession beginInterruption] and end with Recording = YES> is going active.

Using the universal log to identify processes responsible for mic and
camera access has proven effective. The strategy’s main downside is that
Apple occasionally changes or removes relevant log messages. For example,
OverSight used different log messages to identify responsible processes
in earlier versions of macOS, forcing me to update the tool when Apple
removed them. You can see these updates by viewing the AVMonitor.m
 commit history in OverSight’s GitHub repository.

Triggering Scripts
When I introduced OverSight in 2015, macOS provided no restrictions on
mic or webcam access, meaning any malware that infected the system
could trivially access either. Recent versions of macOS have addressed this

292!!!Chapter 12

shortcoming by prompting the user the "rst time any application attempts
to access these devices. Unfortunately, this approach relies on the operat-
ing system’s Transparency, Consent, and Control (TCC) mechanism, which
hackers and malware often bypass, as noted in Chapter!6.

Besides providing an additional layer of defense, OverSight offers features
that users have leveraged creatively. For example, it provides a mechanism
to take additional actions whenever a process accesses the mic or camera. If
you open OverSight’s preferences and click the Action tab, you’ll see that you
can specify a path to an external script or binary. If a user provides such an
executable, OverSight will execute it upon each activation event.

To further enhance this capability, another option allows users to
enable arguments to provide to the script, including the device, state, and
responsible process. This makes OverSight relatively easy to integrate into
other security tools (although users have frequently used the feature for
more practical reasons, such as turning on an external light outside their
home of"ce whenever they activate their mic or camera).

OverSight’s code to execute external scripts or binaries is fairly straight-
forward, though the handling of arguments requires a few nuances. Over-
Sight makes use of the NSUserDefaults class to persistently store settings and
preferences, including any user-speci"ed script or binary. Listing 12-13
shows the code that saves the path of an item when the user interacts with
the Browse button.

#define PREF_EXECUTE_PATH @"executePath"
#define PREF_EXECUTE_ACTION @"executeAction"

1 self.executePath.stringValue = panel.URL.path;
...
2 [NSUserDefaults.standardUserDefaults setBool:NSControlStateValueOn
forKey:PREF_EXECUTE_ACTION];

3 [NSUserDefaults.standardUserDefaults setObject:self.executePath.stringValue
forKey:PREF_EXECUTE_PATH];

4 [NSUserDefaults.standardUserDefaults synchronize];

Listing 12-13: The NSUserDefaults class used to store user preferences

We save the path of the item the user selected via the user interface 1,
then set a #ag indicating that the user speci"ed an action 2 and save the
item’s path 3. Note that panel is an NSOpenPanel object containing the item
the user selected. We set the #ag using the setBool: method of the NSUser
Defaults’s standardUserDefaults object and set the item path using the
 setObject: method. Finally, we synchronize to trigger a save 4.

When the user speci"es an external item to run, OverSight invokes a
helper function named executeUserAction: to run the item when a run-state
change occurs to a mic or camera (Listing 12-14).

#define SHELL @"/bin/bash"
#define PREF_EXECUTE_PATH @"executePath"

Mic and Webcam Monitor!!!293

#define PREF_EXECUTE_ACTION_ARGS @"executeActionArgs"

-(BOOL)executeUserAction:(Event*)event {
 NSMutableString* args = [NSMutableString string];

 NSString* action = [NSUserDefaults.standardUserDefaults objectForKey:PREF_EXECUTE_PATH]; 1
 if(YES == [NSUserDefaults.standardUserDefaults boolForKey:PREF_EXECUTE_ACTION_ARGS]) { 2
 [args appendString:@"-device "]; 3
 (Device_Camera == event.deviceType) ? [args appendString:@"camera"] :
 [args appendString:@"microphone"];

 [args appendString:@" -process "];
 [args appendString:event.client.pid.stringValue];
 ...
 }

 4 execTask(SHELL, @[@"-c", [NSString stringWithFormat:@"\"%@\" %@", action, args]], NO, NO);
 ...

Listing 12-14: Executing a user-specified item with arguments

The executeUserAction: method "rst extracts the path of the user-
speci"ed item to execute from the saved preference 1. Then it checks
whether the user has opted to pass arguments to the item 2. If so, it
dynamically builds a string containing the arguments, including the
device!that triggered the event and the responsible process 3. Finally, it
executes the item and any arguments via the shell using the execTask helper
function 4 discussed in previous chapters.

You might be wondering why OverSight executes the user-speci"ed item
via /bin/bash instead of just executing the item directly. Well, as the shell
supports the execution of both scripts and stand-alone executables, this
means users can specify either in OverSight.

Stopping
It’s nice to provide users with an easy way to pause or fully disable a
security tool they have installed. I’ll end this chapter by looking at
OverSight’s code to stop the device and log monitor. I won’t cover the
UI components and logic that expose this ability, but you can "nd them
implemented as a macOS status bar menu in OverSight’s Application/
StatusBarItem.m "le.

When a user disables or stops OverSight, it "rst stops its log monitor by
calling a stop method that the custom log monitor exposes. This method
ends the stream that ingests log messages by invoking the OSLogEventLiveStream
object’s invalidate method. Once the log monitor has stopped, OverSight
stops monitoring all audio and video devices in two loops (Listing 12-15).

294!!!Chapter 12

-(void)stop {
 ...
 for(AVCaptureDevice* audioDevice in [AVCaptureDevice devicesWithMediaType:AVMediaType
 Audio]) {
 [self unwatchAudioDevice:audioDevice];
 }

 for(AVCaptureDevice* videoDevice in [AVCaptureDevice devicesWithMediaType:AVMediaType
 Video]) {
 [self unwatchVideoDevice:videoDevice];
 }
 ...
}

Listing 12-15: Ending the monitoring of all devices

One loop iterates over all audio devices, calling OverSight’s unwatch
Audio Device: method, and a second loop iterates over video devices to invoke
unwatchVideoDevice: on them. The code in these methods, which remove lis-
tener blocks, is nearly identical to the watch* monitoring methods covered
earlier in this chapter, as you can see in this snippet from the unwatch Audio
Device method (Listing 12-16).

-(void)unwatchAudioDevice:(AVCaptureDevice*)device {
 ...
 AudioObjectID deviceID = [self getAVObjectID:device];

 AudioObjectPropertyAddress propertyStruct = {0};
 propertyStruct.mScope = kAudioObjectPropertyScopeGlobal;
 propertyStruct.mElement = kAudioObjectPropertyElementMain;
 propertyStruct.mSelector = kAudioDevicePropertyDeviceIsRunningSomewhere;

 1 AudioObjectRemovePropertyListenerBlock(deviceID,
 &propertyStruct, self.eventQueue, self.audioListeners[device.uniqueID]);
 ...
}

Listing 12-16: Removing a property listener block from an audio device

The code in this listing "rst gets the speci"ed device’s ID and then
initializes an AudioObjectPropertyAddress that describes the previously added
property listener 1. It passes these, along with the listener block stored in
the dictionary named audioListeners, to the AudioObject Remove Property Listener
Block function. This fully removes the property listener block, ending
OverSight’s monitoring of the device.

Conclusion
Some of the most insidious threats targeting Mac users spy on their victim
using the mic or camera. Instead of trying to detect speci"c malware speci-
mens, OverSight counters all of them by taking the simple, albeit powerful,
heuristic-based approach of detecting unauthorized mic and camera access.

Mic and Webcam Monitor!!!295

In this chapter, I "rst showed you how OverSight leverages various
CoreAudio and CoreMediaIO APIs to register for noti"cations about mic and
camera activations and deactivations. Then we explored the tool’s use of
a custom log monitor to identify the process responsible for the event.
Finally, I showed you how users can easily extend OverSight to execute
external scripts or binaries as it detects events and the logic behind stop-
ping OverSight.

In the next chapter, we’ll continue to explore the building of robust
security tools by looking at how to create a DNS monitor capable of detect-
ing and blocking unauthorized network access.

Notes
 1. Selena Larson, “Mac Malware Caught Silently Spying on Computer

Users,” CNN Money, July!24, 2017, https://money.cnn.com/2017/07/24/
technology/mac-fruit!y-malware-spying/index.html.

 2. US Department of Justice, Of"ce of Public Affairs, “Ohio Computer
Programmer Indicted for Infecting Thousands of Computers with
Malicious Software and Gaining Access to Victims’ Communications
and Personal Information,” press release no.!18-21, January!10, 2018,
https://www.justice.gov/opa/pr/ohio-computer-programmer-indicted-infecting
-thousands-computers-malicious-software-and.

 3. “AVFoundation,” Apple Developer Documentation, https://developer.apple
.com/documentation/avfoundation?language=objc.

 4. “AVCapture Device,” Apple Developer Documentation, https://developer
.apple.com/documentation/avfoundation/avcapturedevice?language=objc.

 5. “doesNotRecognizeSelector:,” Apple Developer Documentation, https://
developer.apple.com/documentation/objectivec/nsobject/1418637-doesnotrecognize
selector?language=objc.

 6. “performSelector May Cause a Leak Because Its Selector Is Unknown,”
Stack Over#ow, November!18, 2018, https://stackover!ow.com/a/20058585.

 7. “The I/O Registry,” Apple Documentation Archive, last updated
April!9, 2014, https://developer.apple.com/library/archive/documentation/
DeviceDrivers/Conceptual/IOKitFundamentals/TheRegistry/TheRegistry.html.

 8. You can read more about this series of events in Corin Faife, “This Mac
Hacker’s Code Is So Good, Corporations Keep Stealing It,” The Verge,
August!11, 2022, https://www.theverge.com/2022/8/11/23301130/patrick
-wardle-mac-code-corporations-stealing-black-hat.

https://money.cnn.com/2017/07/24/technology/mac-fruitfly-malware-spying/index.html
https://money.cnn.com/2017/07/24/technology/mac-fruitfly-malware-spying/index.html
https://www.justice.gov/opa/pr/ohio-computer-programmer-indicted-infecting-thousands-computers-malicious-software-and
https://www.justice.gov/opa/pr/ohio-computer-programmer-indicted-infecting-thousands-computers-malicious-software-and
https://developer.apple.com/documentation/avfoundation?language=objc
https://developer.apple.com/documentation/avfoundation?language=objc
https://developer.apple.com/documentation/avfoundation/avcapturedevice?language=objc
https://developer.apple.com/documentation/avfoundation/avcapturedevice?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/1418637-doesnotrecognizeselector?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/1418637-doesnotrecognizeselector?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/1418637-doesnotrecognizeselector?language=objc
https://stackoverflow.com/a/20058585
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/TheRegistry/TheRegistry.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/TheRegistry/TheRegistry.html
https://www.theverge.com/2022/8/11/23301130/patrick-wardle-mac-code-corporations-stealing-black-hat
https://www.theverge.com/2022/8/11/23301130/patrick-wardle-mac-code-corporations-stealing-black-hat

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

